Publications

Perovskite-based photovoltaic cells and light-emitting diodes


1. K. Wang, Z. -Y. Lin, Z. -H. Zhang, L. -R. Jin, K. Ma, A. H. Coffey, H. R. Atapattu, Y. Gao, J. -Y. Park, Z. -T. Wei, B. P. Finkenauer, C. -H. Zhu, X. -G. Meng, S. N. Chowdhury, Z. -Y. Chen, T. Terlier, T. -H. Do, Y. Yao, K. R. Graham, A. Boltasseva, T. -F. Guo, L. -B. Huang, H. -W. Gao, B. M. Savoie, L. -T. Dou* (2023, Jan). Suppressing phase disproportionation in quasi-2D perovskite light-emitting diodes. Nature Communications. 14, 397.

2. M. Singh, I. -H. Ho, A. Singh, C. -W. Chan, J. -W. Yang, T. -F. Guo, H. Ahn, V. -C. Tung, C. -W. Chu, Y. -J. Lu* (2022, Oct). Unveiling ultrafast carrier extraction in highly efficient 2D/3D bilayer perovskite solar cells. ACS Photonics. 9, 3584–3591. (SCI).

3. H. -W. Ke, I. Y. -Y. Bu, B. -J. Chen, C. -C. Hu, Y. -S. Fu*, T. -F. Guo* (2022, Jun). Fabrication of highly transparent CsPbBr3 quantum-dot thin film via bath coating for light emission applications. Ceram. Int. 48, 15729. (SCI).

4. T. -L. Shen, A. Loganathan, T. -H. Do, C. -M. Wu, Y. -T. Chen, Z. -J. Chen, N. -C. Chiu, C. -H. Shih, H. -C. Wang, J. -H. Chou, Y. -Y. Hsu, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. -T. Chen, T. -C. Wen, T. -F. Guo* (2022, Feb). Characterize and retard the impact of the bias-induced mobile ions in CH3NH3PbBr3 perovskite light-emitting diodes. Adv. Optical Mater. 10, 2101439. (SCI).

5.  I. Y. -Y. Bu*, H. -W. Ke, Y. -S. Fu, T. -F. Guo (2021, Jul). Highly stable perovskite; Light CsPbBr3/silica composite prepared via novel electrospray injection process. Optik 238, 166690.

6. P. -Y. Lin, A. Loganathan, I. Raifuku, M. -H. Li, Y. -Y. Chiu, S. -T. Chang, A. Fakharuddin, C. -F. Lin, T. -F. Guo, L. Schmidt-Mende*, P. Chen* (2021, Jun). Pseudo-halide perovskite solar cells. Adv. Energy Mater. 11, 2100818. (SCI).

7. W. -C. Lai*, T. -Y. Wang, S. -H. Yang, P. -Y. Chen, T. -F. Guo*, P. Chen, H. -C. Hsu (2021, May). Effects of choline chloride in lead bromide layer and methylammonium bromide precursor on perovskite conversion and optoelectronic properties of perovskite-based light-emitting diodes. ACS Appl. Electron. Mater. 3, 2035-2043. (SCI).

8. P. -T. Wu, C. -C. Hu, L. -Y. Chen, P. -Y. Lin, T. -F. Guo*, Y. -S. Fu* (2021, Apr). Cuprous iodide dose dependent passivation of MAPbI3 perovskite solar cells. Org. Electron. 91, 106080. (SCI).

9. K. Wang, L. -R. Jin, Y. Gao, A. -H. Liang, B. -P. Finkenauer, W. -C. Zhao, Z. -T. Wei, C. -H. Zhu, T. -F. Guo, L. -B. Huang, L. -T. Dou* (2021, Mar). Lead-free organic−perovskite hybrid quantum wells for highly stable light emitting diodes. ACS Nano 15, 6316-6325. (SCI).

10. M. Singh, R. -T. Yang, D. -W. Weng, H. -L. Hu, A. Singh, A. Mohapatra, Y. -T. Chen, Y. -J. Lu, T. -F. Guo, G. Li, H. -C. Lin*, C. -W. Chu* (2021, Mar). Low-temperature processed bipolar metal oxide charge transporting layers for highly efficient perovskite solar cells. Sol. Energy Mater Sol. Cells. 221, 110870. (SCI).

11. Y. -J. Lu*, T. -L. Shen, K. -N. Peng, P. -J. Cheng, S. -W. Chang, M. -Y. Lu, C. -W. Chu, T. -F. Guo, H. -A. Atwater* (2021, Jan). Upconversion plasmonic lasing from an organolead trihalide perovskite nanocrystal with low threshold. ACS Photonics 8, 335-342. (SCI).

12. W. -C. Lai*, W. -M. Hsieh, H. -C. Yu, S. -H. Yang, T. -F. Guo*, P. Chen (2020, Jul). Conversion efficiency enhancement of methylammonium lead triiodide perovskite solar cells converted from thermally deposited lead iodide via thin methylammonium iodide interlayer. Org. Electron. 82, 105713. (SCI).

13. S. -I. Seok*, T. -F. Guo* (2020, Jun). Halide perovskite materials and devices. MRS Bulletin 45, 427-430. (SCI).

14. W. -T. Wang, P. Chen, C. -H. Chiang, T. -F. Guo, C. -G. Wu*, S. -P. Feng* (2020, May). Synergistic reinforcement of built-un electric fields for highly efficient and stable perovskite photovoltaics. Adv. Funct. Mater. 30, 1909755. (SCI).

15. W. -C. Lai*, W. -M. Hsieh, S. -H. Yang, J. -C. Yang, T. -F. Guo*, P. Chen, L. -J. Lin, H. -C. Hsu (2020, Apr). High-performance perovskite-based light-emitting diodes from the conversion of amorphous spin-coated lead bromide with phenethylamine doping. ACS Omega 5, 8697-8706. (SCI).

16. W. -C. Lai*, H. -C. Yu, S. -H. Yang, T. -F. Guo*, P. Chen, L. -J. Li, H. -C. Hsu, A. Singh, C. -W. Chu (2019 Oct). Improved conversion efficiency of perovskite solar cells converted from thermally deposited lead iodide with dimethyl sulfoxide-treated poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate). Org. Electron. 73, 266-272. (SCI).

17. P. -T. Wu, M. -C. Tsai, T. -F. Guo*, Y. -S. Fu* (2019 Oct). The impact at polar solvent treatment on p-contact layers (PEDOT:PSS or NiOx) of hybrid perovskite solar cells. Org. Electron. 73, 273-278. (SCI).

18. A. Singh, N. -C. Chiu, K. M. Boopathi, Y. -J. Lu, A. Mohapata, G. Li, Y. -F. Chen, T. -F. Guo*, and C. -W. Chu* (2019, Aug). Lead-free antimony-based light-emitting diodes trough the vapor-anion-exchange method. ACS Appl. Mater. Interfaces 11, 35088-35094.

19. P. -K. Kung, M. -H. Li, P. -Y. Lin, Y. -H. Chiang, C. -R. Chan, T. -F. Guo, P. Chen* (2018 Nov). A review of inorganic hole transport materials for perovskite solar cells. Adv. Mater. Interfaces 5, 1800882. (SCI).

20. K. Sivashanmugan, C. -H. Lin, S. -H. Hsu, T. -F. Guo, T. -C. Wen* (2018 Nov). Interfacial engineering of ZnO surface modified with poly-vinylpyrrolidone and p-aminobenzoic acid for high-performance perovskite solar cells. Mater. Chem. and Phys. 219, 90-95. (SCI).

21. M. -H. Li, H. -H. Yeh, Y. -H. Chiang, U -S. Jeng, C. -J. Su, H. -W. Shiu, Y. -J. Hsu, N. Kosugi, T. Ohigashi, Y. -A. Chen, P. -S. Shen, P. Chen*, and T. -F. Guo* (2018, Jun). Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv. Mater. 30, 1804801. (SCI). (Highly cited papers in ESI)

22. K. -C. Hsu, C. -H. Lee, T. -F. Guo, T. -H. Chen, T. -H. Fang*, Y. -S. Fu* (2018, Jun). Improvement efficiency of perovskite solar cells by hybrid electrospray and vapor-assisted solution technology. Org. Electron. 57, 221-225. (SCI).

23. W. -C. Lai*, K. -W. Lin, T. -F. Guo*, P. Chen, Y. -Y. Liao (2018, Feb). Efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells with oxidized Ni/Au/Cu transparent electrode. Appl. Phys. Lett. 112, 071103. (SCI).

24. W. -C. Lai*, K. -W. Lin, T. -F. Guo*, P. Chen, Y. -Y. Liao (2018, Jan). Perovskite-based solar cells with inorganic inverted hybrid planar heterojunction structure. AIP Advances 8, 015109. (SCI).

25. Y. -H. Chiang, C. -K. Shih, A. -S. Sie, M. -H. Li, C. -C. Peng, P. -S. Shen, Y. -P. Wang, T. -F. Guo, P. Chen* (2017, Dec). Highly stable perovskite solar cells with all-inorganic selective contacts from microwave-synthesized oxide nanoparticles. J. Mater. Chem. A 5, 25485-25493. (SCI).

26. M. -H. Li, Y. -S. Yang, K. -C. Wang, Y. -H. Chiang, P. -S. Shen, W. -C. Lai, T. -F. Guo, and P. Chen* (2017, Dec). Robust and recyclable substrate template with an ultrathin nanoporous counter electrode for organic-hole-conductor-free monolithic perovskite solar cells. ACS Appl. Mater. Interfaces 9, 41845-41854. (SCI).

27. I. Y. Y. Bu, Y. -S. Fu*, J. -F. Li, and T. -F. Guo (2017, Oct). Large-area electrospray-deposited nanocrystalline CuxO hole transport layer for perovskite solar cells. RSC Adv. 7, 46651-46656. (SCI).

28. P. -Y. Lin, T. Wu, M. Ahmadi, L. Liu, S. Haacke, T -F. Guo*, and Bin Hu* (2017, Apr). Simultaneously enhancing dissociation and suppressing recombination in perovskite solar cells. Nano Energy 36, 95-101. (SCI).

29. P. -Y. Lin, Y. -Y. Chen, T -F. Guo*, Y. -S. Fu*, L. -C. Lai, and C. -K. Lee (2017, Feb). Electrospray technique in fabricating perovskite-based hybrid solar cells under ambient conditions. RSC Adv. 7, 10985-10991. (SCI).

30. Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, and T -F. Guo* (2016, Aug). NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes. Adv. Mater. 28, 8687-8694. (SCI).

31. P. -S. Shen, Y. -H. Chiang, M.-H. Li, T. -F. Guo, and P. Chen* (2016, May). Research Update: Hybrid organic-inorganic perovskite (HOIP) thin films and solar cells by vapor phase reaction. APL Materials 4, 091509. (SCI).

32. Y. -H. Chiang, H. -M. Cheng, M. -H. Li, T. -F. Guo, and P. Chen* (2016, May). Low-pressure vapor-assisted solution process for thiocyanate-based pseudohalide perovskite solar cells. ChemSusChem 9, 2620-2627. (SCI).

33. A. Corani, M. -H. Li, P. -S. Shen, P. Chen*, T. -F. Guo*, A. E. Nahhas, K. Zheng, A. Yartsev, V. Sundström, and C. S. Ponseca, Jr.* (2016, Mar). Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p type contact electrode. J. Phys. Chem. Lett. 7, 1096-1101. (SCI).

34. P. -S. Shen, J. -S. Chen, Y. -H. Chiang, M. -H. Li, T. -F. Guo, and P. Chen* (2016, Mar). Low-pressure hybrid chemical vapor growth for efficient perovskite solar cells and large-area module. Adv. Mater. Interfaces 3, 1500849. (SCI).

35. W. -C. Lai*, K. -W. Lin, Y. -T. Wang, T. -Y. Chiang, P. Chen, T. -F. Guo* (2016, Mar). Oxidized Ni/Au transparent electrode in efficient CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells. Adv. Mater. 28, 3290-3297. (SCI).

36. L. Meng, J. You*, T. -F. Guo, and Y. Yang* (2016, Jan). Recent advances in the inverted planar structure of perovskite solar cells. Acc. Chem. Res. 49, 155-165. (SCI). (Highly cited papers in ESI)

37. W. -C. Lai*, K. -W. Lin, T. -F. Guo*, P. Chen and Y. -T. Wang (2015, Dec). Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Appl. Phys. Lett. 107, 253301-253305. (SCI).

38. J. You, L. Meng, T. -B. Song, T. -F. Guo, Y.(Michael) Yang, W. -H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. -D. Marco and Y. Yang* (2015, Oct). Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75-81. (SCI). (Highly cited papers in ESI)

39. T. -Y. Chiang, G. -L. Fan, J. -Y. Jeng, K. -C. Chen, P. Chen, T. -C. Wen, T. -F. Guo* and K. -T. Wong* (2015, Oct). Functional p-type, polymerized organic electrode interlayer in CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells. ACS Appl. Mater. Interfaces 7, 24973-24981. (SCI).

40. M. -H. Li, C. -W. Hsu, P. -S. Shen, H. -M. Cheng, Y. Chi*, P. Chen* and T. -F. Guo (2015, Aug). Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chem. Commun. 51, 15518-15521. (SCI).

41. W. -C. Lai*, K. -W. Lin, T. -F. Guo, and J. Lee (2015, May). Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer. IEEE Trans. Electron Dev. 62, 1590-1595. (SCI).

42. M. -H. Li, P.-S. Shen, K. -C. Wang, T. -F. Guo and P. Chen* (2015, Apr). Inorganic p-type contact materials for perovskite-based solar cells. J. Mater. Chem. A 3, 9318-9319. (SCI).

43. H. -Y. Hsu, C. -Y. Wang, A. Fathi, J. -W. Shiu, C. -C. Chung, P. -S. Shen, T. -F. Guo, P. Chen, Y. -P. Lee, and E. W. -G. Diau* (2014, Aug). Femtosecond excitonic relaxation dynamics of perovskite on mesoporous films of Al2O3 and NiO nanoparticles. Angew. Chem. Int. Edit. 126, 9493-9496. (SCI).

44. K. -C. Wang, P. -S. Shen, M. -H. Li, S. Chen, M. -W. Lin, P. Chen*, and T. -F. Guo (2014, Jul). Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851-11858. (SCI).

45. J. -Y. Jeng, K. -C. Chen, T. -Y. Chiang, P. -Y. Lin, T. -D. Tsai, Y. -C. Chang, T. -F. Guo*, P. Chen*, T. -C. Wen, and Y. -J. Hsu (2014, Jun). Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107-4113. (SCI). (Highly cited papers in ESI)

46. K. -C. Wang, J. -Y. Jeng, P. -S. Shen, Y. -C. Chang, Eric W. -G. Diau, C. -H. Tsai, T. -Y. Chao, H. -C. Hsu, P. -Y. Lin, P. Chen*, T. -F. Guo*, and T. -C. Wen (2014, Apr). p-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756. (SCI). (Highly cited papers in ESI)

47. Y. -F. Chiang, J. -Y. Jeng, M. -H. Lee, S. -R. Peng, P. Chen*, T. -F. Guo*, T. -C. Wen, Y. -J. Hsu, and C. -M. Hsu (2014, Jan). High voltage and efficient bilayer heterojunction solar cells based on organic-inorganic hybrid perovskite absorber with low-cost flexible substrate. Phys. Chem. Chem. Phys. 16, 6033-6040. (SCI).

48. J. -Y. Jeng, Y. -F. Chiang, M. -H. Lee, S. -R. Peng, T. -F. Guo*, P. Chen*, and T. -C. Wen (2013, Jul). CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv. Mater. 25, 3727-3732. (SCI). (SPIE Newsroom highlighted) (Highly cited papers in ESI)

Magnetic field effect of conjugated molecule devices


1. C. -H. Chen, Y. -S. Li, S. -C. Fang, B. -Y. Lin, C. -Y. Li, Y. -C. Liao, D. -G. Chen, Y. -R. Chen, Y. -C. Kung, C. -C. Wu, Y. -L. Lin, W. -Y. Hung, T. -L. Chiu, C. -F. Lin, E. Y. Li, T. -F. Guo, J. -H. Lee*, K. -T. Wong*, P. -T. Chou* (2023, Feb). High-performance deep-blue OLEDs harnessing triplet-triplet annihilation under low dopant concentration. Adv. Photonics Res. 4, 2200204.

2. N. Chitraningrum, T. -Y. Chu, P. -T. Huang, T. -C. Wen, T. -F. Guo* (2018, Nov). The triplet-triplet annihilation process of triplet to singlet excitons to fluorescence in polymer light-emitting diodes. Org. Electron. 62, 505-510. (SCI).

3. C. -Y. Cheng, N. Chitraningrum, X. -M. Chen, T. -C. Wen, T. -F. Guo* (2018, May). Magnetic field effect of the singlet fission reaction in tetracene-based diodes. Org. Electron. 56, 11-15. (SCI).

4. N. Chitraningrum, T. -Y. Chu, P. -T. Huang, T. -C. Wen, T. -F. Guo* (2018, Feb). Modulating the line shape of magnetoconductance by varying the charge injection in polymer light-emitting diodes. AIP Advances 8, 025209. (SCI).

5. W. -S. Huang, Z. -R. Xu, K. -C. Chen, T. -F. Guo*, J. C. A. Huang*, and T. -C. Wen (2014, Nov). Modulations in line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes. Org. Electron. 15, 3076-3081. (SCI).

6. W. -S. Huang, Z. -R. Xu, B. Hu, T. -F. Guo*, J. C. A. Huang*, and T. -C. Wen (2013, Dec). Magnetoconductance responses of triplet polaron pair charge reaction in hyperfine coupling regime. Appl. Phys. Lett. 103, 253304. (SCI).

7. K. -W. Tsai, T. -H. Lee, J. -H. Wu, J. -Y. Jhou, W. -S. Huang, S. -N. Hsieh, T. -C. Wen*, T. -F. Guo*, and J. C. A. Huang* (2013, Mar). Antagonistic responses between magnetoconductance and magnetoelectroluminescence in polymer lightemitting diodes. Org. Electron. 14, 1376-1382. (SCI).

8. W. -S. Huang, T. -H. Lee, T. -F. Guo*, J. C. A. Huang, and T. -C. Wen (2012, Jul). Identifying the magnetoconductance responses by the induced charge transfer complex states in pentacene-based diodes. Appl. Phys. Lett. 101, 053307. (SCI).

9. F. Li*, Y. Zhan, T. -H. Lee, X. Liu, A. Chikamatsu, T. -F. Guo, H. -J. Lin, J. C. A. Huang, and M. Fahlman* (2011, Sep). Modified surface electronic and magnetic properties of La0.6Sr0.4MnO3 thin films for spintronics applications. J. Phys. Chem. C 115, 1694-16953. (SCI).

10. T. -H. Lee, J. -H. Li, W. -S. Huang, B. Hu, J. C. A. Huang*, T. -F. Guo*, and T. -C. Wen (2011, Aug). Magnetoconductance responses in organic charge-transfer-complex molecules. Appl. Phys. Lett. 99, 073307. (SCI).

11. T. -H. Lee, B. Hu, C. -L. Tsai, R. -S. Guan, T. -C. Wen, T. -F. Guo*, and J. C. A. Huang* (2010, Apr). The magneto conductance responses in polymer photovoltaic devices. Org. Electron. 11, 677-685. (SCI).

12. T. -H. Lee, T. -F. Guo*, J. C. A. Huang*, and T. -C. Wen (2008, Apr). Modulations of photoinduced magnetoconductance for polymer diodes. Appl. Phys. Lett. 92, 153303. (SCI).

Organic photovoltaics (OPVs)


1. C. -H. Lin, C. -W. Huang, P. -H. Wang, T. -F. Guo, T. -C. Wen* (2020, Feb). Sol-gel ZnO modified by organic dye molecules for efficient inverted polymer solar cells. J. Taiwan Inst. Chem. Engin. 107, 72-78. (SCI).

2. R. -X. Ou, C. -H. Lin, T. -F. Guo, T. -C. Wen* (2019 Mar). Improvement in inverted polymer solar cells via 1-benzoyl-2-thiourea as surface modifier on sol-gel ZnO. J. Taiwan Inst. Chem. Engin. 96, 131-136. (SCI).

3. R. -X. Ou, Y. -C. Chen, C. -H. Lin, T. -F. Guo, T. -C. Wen* (2018 Dec). Efficient inverted polymer solar cells via pyridine-based organic molecules as interfacial modification layer on sol-gel zinc oxide surface. Org. Electron. 63, 93-97. (SCI).

4. Y. -C. Chen, C. -H. Lin, T. -F. Guo, T. -C. Wen* (2018 Aug). Surfactant-enriched ZnO surface via sol-gel process for the efficient inverted polymer solar cell. ACS Appl. Mater. Interfaces 10, 26805-26811. (SCI).

5. C.-K. Wu, K. Sivashanmugan, T. -F. Guo, T. -C. Wen* (2018, Mar). Enhancement of inverted polymer solar cells performance using cetyltrimethylammonium-bromide modified ZnO. Materials 11, 378 (2018). (SCI) .

6. C. -H. Wu, C. -Y. Chin, T. -Y. Chen, S. -N. Hsieh, C. -H. Lee, T. -F. Guo, Alex K. -Y. Jen, and T. -C. Wen* (2013, Dec). Enhanced performance of polymer solar cells using solution-processed tetra-n-alkyl ammonium bromides as electron extraction layers. J. Mater. Chem. A 1, 2582-2587. (SCI).

7. Y. -F. Chiang, R. -T. Chen, A. Burke, U. Bach, P. Chen*, and T. -F. Guo (2013, Nov). Non-color distortion for visible light transmitted tandem solid state dye sensitized solar cells. Renew. Energy 59, 136-140. (SCI).

8. Y. -F. Chiang, R. -T. Chen, P. -S. Shen, P. Chen*, and T. -F. Guo* (2013, Mar). Extension lifetime for dye-sensitized solar cells through multiple dye adsorption/desorption process. J. Power Sources 225, 257-262. (SCI).

9. Y. -F. Chiang, C. -H. Tsai, P. Chen*, and T. -F. Guo* (2012, Apr). Bifacial transparent solid-state dye-sensitized solar cell with sputtered indium-tin-oxide counter electrode. Solar Energy 86, 1967-1972. (SCI).

10. H. -C. Li, K. K. Rao, J. -Y. Jeng, Y. -J. Hsiao, T. -F. Guo*, Y. -R. Jeng*, and T. -C. Wen (2011, Nov). Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Sol. Energy Mater. Sol. Cells 95, 2976-2980. (SCI).

11. J. -Y. Jeng, M. -W. Lin, Y. -J. Hsu, T. -C. Wen, and T. -F. Guo* (2011, Nov). The roles of poly(ethylene oxide) electrode buffers in efficient polymer photovoltaics. Adv. Energy Mater. 1, 1192-1198. (SCI).

12. C. -Y. Li, T. -C. Wen*, T. -H. Lee, T. -F. Guo*, J. C. A. Huang, Y. -C. Lin, and Y. -J. Lin (2009, Feb). An inverted polymer photovoltaic cell with increased air stability obtained by employing novel hole/electron collecting layers. J. Mater. Chem. 19, 1643-1647. (SCI).

13. T. -S. Huang, C. -Y. Huang, Y. -K. Su*, J. -S. Fang, M. V. M. Rao, T. -F. Guo, and T. -C. Wen (2008, Dec). High-efficiency polymer photovoltaic device with glycerol-modified buffer layer. IEEE Photonic Tech. L. 20, 1935-1937. (SCI).

14. G. L. Pakhomov*, V. V. Travkin, A. Yu, and T. -F. Guo (2008, Dec). Photovoltaic properties of Schottky-barrier cell utilizing sub-phthalocyanine layer. J. Porphyr. Phthalocya. 12, 1182-1186. (SCI).

15. C. -Y. Li, T. -C. Wen*, and T. -F. Guo* (2008, Aug). Sulfonated poly(diphenylamine) as a novel hole-collecting layer in polymer photovoltaic cells. J. Mater. Chem. 18, 4478-4482. (SCI).

16. C. -Y. Kuo, W. -C. Tang, C. Gau*, T. -F. Guo, and D. -Z. Jeng (2008, Jul). Ordered bulk heterojunction solar cells with vertically aligned TiO2 nanorods embedded in a conjugated polymer. Appl. Phys. Lett. 93, 033307. (SCI).

17. T. -F. Guo*, T. -C. Wen, G. L. Pakhomov, X. -G. Chin, S. -H. Liou, P. -H. Yeh, and C. -H. Yang (2008, Mar). Effects of film treatment on the performance of poly(3-hexylthiophene)/soluble fullerene-based organic solar cells. Thin Solid Films 516, 3138-3142. (SCI).

18. C. -H. Yang*, J. -Y. Chang*, P. -H. Yeh, and T. -F. Guo (2007, Dec). Preparation and characterization of methanofullerenes for polymer-fullerene bulk heterojunction solar cells. Carbon 45, 2951-2956. (SCI).

19. Y. -C. Chang*, F. -Y. Chou, P. -H. Yeh, H. -W. Chen, S. -H. Chang, Y. -C. Lan, T. -F. Guo, T. C. Tsai, and C. -T. Lee (2007, Nov). Effect of surface plasmon resonat scattering on the power conversion efficiency of organic thin-film solar cells. J. Vac. Sci. Technol. B 25, 1899-1902. (SCI).

20. T. -F. Guo*, G. L. Pakhomov, T. -C. Wen, X. -G. Chin, and S. -H. Liou (2006, Dec). Effect of TiO2 nanoparticles on polymer-based bulk heterojunction solar cells. Jpn. J. Appl. Phys. 45, L1314-L1316. (SCI).


Organic and polymer light-emitting diodes (O/PLEDs)


1. C. -H. Wu, K. -W. Tsai, W. -J. Huang, C. -Y. Wu, T. -Y. Chen, T. -F. Guo, Y. -J. Hsu, and T. -C. Wen* (2016, Jan). Amide-functionalized small molecules as solution processed electron injection layers in highly efficient polymer light emitting diodes. Adv. Mater. Interfaces 3, 1500621. (SCI).

2. M. -W. Lin, Y. -C. Lin, A. Rauan, T. -C. Wen, Y. -J. Hsu, and T. -F. Guo* (2014, Jul). Role of solution-processable polyethylenimine electrode interlayer in fabricating air-stable polymer light-emitting diodes. Isr. J. Chem. 54, 935-941. (SCI).

3. C. -H. Wu, C. -Y. Chin, T. -Y. Chen, T. -F. Guo, C. -H. Lee, T. -L. Lin, Alex K. -Y. Jen, and T. -C. Wen* (2014, Jun). Significance of ions with an ordered arrangement for enhancing the electron injection/extraction in polymer optoelectronic devices. J. Mater. Chem. C 2, 4805-4811. (SCI).

4. C. -S. Wu, H. -A. Lu, C. -P. Chen, T. -F. Guo, and Y. Chen* (2014, Mar). Water/alcohol soluble electron injection material containing azacrown ether groups: synthesis, characterization and application to enhancement of electroluminescence. Org. Biomol. Chem. 12, 1430-1439. (SCI).

5. K. -W. Tsai, T. -F. Guo, Alex K. -Y. Jen, and T. -C. Wen* (2014, Jan). Role of self-assembled tetraoctylammonium bromide on various conjugated polymers in polymer light-emitting diodes. J. Mater. Chem. C 2, 272-276. (SCI).

6. Y. -H. Lee, M. -W. Lin, T. -C. Wen, and T. -F. Guo* (2013, Oct). The metal interlayer in the charge generation layer of tandem organic light-emitting diodes. J. Appl. Phys. 114, 154512. (SCI).

7. Y. -H. Lee, T. -C. Wu, C. -W. Liaw, T. -C. Wen, S. -W. Feng, J. -J. Lee, Y. -T. Wu*, and T. -F. Guo* (2013, Feb). Non-doped active layer, benzo[k]fluoranthene-based linear acenes, for deep blue- to green-emissive organic light-emitting diodes. Org. Electron. 14, 1064-1072. (SCI).

8. K. -W. Tsai, S. -N. Hsieh, T. -F. Guo, Y. -J. Hsu, Alex K. -Y. Jen, and T. -C. Wen* (2013, Jan). Enhancing the hole injection ability of indium tin oxide via ammonium salts in polymer light-emitting diodes. J. Mater. Chem. C 1, 531-535. (SCI).

9. M. -W. Lin, R. -T. Chen, C. -H. Yeh, T. -C. Wen, and T. -F. Guo* (2012, Dec). Bright, efficient, deep blue-emissive polymer light-emitting diodes of suitable hole-transport layer and cathode design. Org. Electron. 13, 3067-3073. (SCI).

10. Y. -H. Lee, T. -C. Wu, C. -W. Liaw, T. -C. Wen, T. -F. Guo*, and Y. -T. Wu* (2012, Apr). Benzo[k]fluoranthene-based linear acenes for efficient deep blue organic light-emitting devices. J. Mater. Chem. 22, 11302-11308. (SCI).

11. C. -Y. Li, Y. -N. Chou, J. -R. Syu, S. -N. Hsieh, T. -D. Tsai, C. -H. Wu, T. -F. Guo, W. -C. Hsu, Y. -J. Hsu, and T. -C. Wen* (2011, Sep). Effect of annealing ZnO on the performance of inverted polymer light-emitting diodes based on SAM/ZnO as an electron injection layer. Org. Electron. 12, 1477-1482. (SCI).

12. M. -W. Lin, T. -C. Wen, Y. -J. Hsu, and T. -F. Guo* (2011, Sep). Poly(ethylene oxide)-functionalized Al cathodes of tunable electron-injection capabilities for efficient polymer light-emitting diodes. J. Mater. Chem. 21, 18840-18846. (SCI).

13. S. -N. Hsieh, S. -W. Hsiao, T. -Y. Chen, C. -Y. Li, C. -H. Lee, T. -F. Guo, Y. -J. Hsu, T. -L. Lin, Y. Wei, and T. -C. Wen* (2011, Apr). Self-assembled tetraoctylammonium bromide as an electron-injection layer for cathode-independent high-efficiency polymer light-emitting diodes. J. Mater. Chem. 21, 8715-8720. (SCI).

14. M. -L. Tu*, Y. -K. Su*, S. -S. Wu, T. -F. Guo, T. -C. Wen, and C. -Y. Huang (2011, Mar). Violet electroluminescence from poly(N-vinylcarbazole)/ZnOnanrod composite polymer light-emitting devices. Synth. Met. 161, 450-454. (SCI).

15. H. -F. Chen, C. -T. Liao, T. -C. Chen, H. -C. Su*, K. -T. Wong*, and T. -F. Guo (2011, Jan). An ionic terfluorene derivative for saturated deep-blue solid state light-emitting electrochemical cells. J. Mater. Chem. 21, 4175-4181. (SCI).

16. C. -Y. Huang*, Y. -K. Su*, C. -Y. Cheng, M. V. M. Rao, Y. -C. Chen, T. -S. Huang, T. -C. Wen, and T. -F. Guo (2010, Apr). Color-tunable polymer light-emitting diodes with conjugated polymer homojunctions. Jpn. J. Appl. Phys. 49, 04DK10. (SCI).

17. S. -N. Hsieh, S. -P. Chen, C. -Y. Li, T. -C. Wen*, T. -F. Guo, and Y. -J. Hsu (2009, Dec). Surface modification of TiO2 by a self-assembly monolayer in inverted-type polymer light-emitting devices. Org. Electron. 10, 1626-1631. (SCI).

18. T. -F. Guo*, T. -C. Wen, Y. -S. Huang, M. -W. Lin, C. -C. Tsou, and C. -T. Chung (2009, Nov). White-emissive tandem-type hybrid organic/polymer diodes with (0.33, 0.33) chromaticity coordinates. Opt. Express 17, 21205-21215. (SCI).

19. L. -W. Chong, Y. -N. Chou, Y. -L. Lee*, T. -C. Wen*, and T. -F. Guo (2009, Sep). Hole-injection enhancement of top-emissive polymer light-emitting diodes by P3HT/FNAB modification of Ag anode. Org. Electron. 10, 1141-1145. (SCI).

20. S. -N. Hsieh, T. -Y. Kuo, L. -W. Chong, T. -C. Wen*, F. -S. Yang, T. -F. Guo, and C. -T. Chung (2009, Jan). A study of semitransparent cathodes on the performance of top-emitting polymer light-emitting diodes. IEEE Photonic Tech. L. 21, 109-101. (SCI).

21. T. -H. Lee, J. C. A. Huang, G. L. Pakhomov, T. -F. Guo*, T. -C. Wen, Y. -S. Huang, C. -C. Tsou, C. -T. Chung, Y. -C. Lin, and Y. -J. Hsu (2008, Oct). Organic-oxide cathode buffer layer in fabricating high-performance polymer light-emitting diodes. Adv. Funct. Mater. 18, 3036-3042. (SCI).

22. L. -W. Chong, T. -C. Wen*, Y. -L. Lee*, and T. -F. Guo (2008, Aug). The modification of silver anode by an organic solvent (tetrahydrofuran) for top-emissive polymer light-emitting diodes. Org. Electron. 9, 515-521. (SCI).

23. C. -Y. Li, T. -C. Wen*, T. -F. Guo, and S. -S. Hu (2008, Feb). A facile synthesis of sulfonated poly(diphenylamine) and the application as a novel hole injection layer in polymer light emitting diodes. Polymer 49, 957-964. (SCI).

24. C. -Y. Hunag, Y. -K. Su*, T. -C. Wen, T. -F. Guo, and M. -L. Tu (2008, Feb). Single-layered hybrid DBPPV-CdSe-ZnS quantum-dot light-emitting diodes. IEEE Photonic Tech. L. 20, 282-284. (SCI).

25. Y. -R. Jeng*, M. -L. Guo, H. -C. Li, and T. -F. Guo (2007, Oct).  Interfacial morphology in polymer light-emitting diodes. Electrochem. Solid St. 10, D139-D141. (SCI).

26. L. -L. Wu, S. -H. Tsai, T. -F. Guo, C. -H. Yang*, and I. -W. Sun* (2007, Oct). Synthesis and green electrophosphorescence of a novel cyclometalated iridium complex in polymer light-emitting diodes. J. Lumin. 126, 687-694. (SCI).

27. C. -H. Yang, T. -F. Guo, and I. -W. Sun* (2007, May). Highly efficient greenish blue-emitting organic diodes based on pyrene derivatives. J. Lumin. 124, 93-98. (SCI).

28. S. -N. Hsieh, T. -Y. Kuo, P. -C. Hsu, T. -C. Wen, T. -F. Guo (2007, May). Study of polymer blends on polymer light-emitting diodes. Mater. Chem. Phys. 106, 70-73. (SCI).

29. S. -N. Hsieh, T. -C. Wen*, and T. -F. Guo (2007, Mar). Improved performance of top-emissive polymer light-emitting device with semitransparent Ag cathode with the aid of Au nanoparticles. Jpn. J. Appl. Phys. 46, 932-936. (SCI).

30. S. -N. Hsieh, T. -C. Wen*, and T. -F. Guo (2007, Feb). Polymer/gold nanoparticles light emitting diodes utilizing high work function metal cathodes. Mater. Chem. Phys. 101, 383-386. (SCI).

31. L. -W. Chong, Y. -L. Lee*, T. -C. Wen*, and T. -F. Guo (2006, Dec). Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes. Appl. Phys. Lett. 89, 233513. (SCI).

32. T. -F. Guo*, F. -S. Yang, Z. -J. Tsai, T. -C. Wen, S. -N. Hsieh, C. -T. Chung, and C. -I. Wu (2006, Aug). High-brightness top-emissive polymer light-emitting diodes utilizing organic oxide/Al/Ag composite cathode. Appl. Phys. Lett. 89, 051103. (SCI).

33. S. -N. Hsieh, T. -Y. Kuo, T. -C. Wen*, T. -F. Guo, and Y. -L. Lee (2006, Aug). High-efficiency polymer light-emitting diode via Al interfacial modification using polyurethane. Jpn. J. Appl. Phys. 45, 773-776. (SCI).

34. T. -F. Guo*, F. -S. Yang, Z. -J. Tsai, T. -C. Wen, C. -I. Wu, and C. -T. Chung (2006, Jul). Organic oxide/Al composite cathode in small molecular organic light emitting diodes. Appl. Phys. Lett. 89, 053507. (SCI).

35. T. -F. Guo*, F. -S. Yang, Z. -J. Tsai, T. -C. Wen, S. -N. Hsieh, Y. -S. Fu, and C. -T. Chung (2006, Mar). Organic oxide/Al composite cathode in efficient polymer light-emitting diodes. Appl. Phys. Lett. 88, 113501. (SCI).

36. S. -F. Chung, T. -C. Wen*, W. -Y. Chou, and T. -F. Guo (2006, Jan). High luminescence polarized polymer light-emitting diodes fabricated using aligned polyfluorene. Jpn. J. Appl. Phys. 45, L60-L63. (SCI).

37. C. -Y. Chang, S. -N. Hsieh, T. -C. Wen*, T. -F. Guo, and C. -H. Cheng (2005, Nov). High efficiency red electrophosphorescent polymer light-emitting diode. Chem. Phys. Lett. 418, 50-53. (SCI).

38. M. -L. Tu, Y. -K. Su*, W. -C. Lu, H. Yang, T. -F. Guo(Kuo), and T. -C. Wen (2005, Oct). Effect of post annealing on performance of polymer light-emitting devices. Jpn. J. Appl. Phys. 44, 7482-7484. (SCI).

39. T. -F. Guo*, F. -S. Yang, Z. -J. Tsai, T. -C. Wen, S. -N. Hsieh, and Y. -S. Fu (2005, Jul). High-performance polymer light-emitting diodes utilizing modified Al cathode. Appl. Phys. Lett. 87, 013504. (SCI). (SPIE Newsroom highlighted)

40. G. He, Y. Li*, T. -F. Guo, and Y. Yang (2003, Apr). Thermal annealing induced high performance light-emitting diodes based on poly(9,9'-dioctyl fluorene). Synth. Met. 137, 1091-1092. (SCI).

41. J. Liu, T. -F. Guo, and Y. Yang* (2002, Jun). Effects of thermal annealing on the performance of polymer light emitting diodes. J. Appl. Phys. 91, 1595-1600. (SCI).

42. J. Ouyang, T. -F. Guo, Y. Yang*, H. Higuchi, M. Yoshioka, and T. Nagatsuka (2002, Jun). High-performance, flexible polymer light-emitting diodes fabricated by a continuous polymer coating process. Adv. Mater. 14, 915-918. (SCI).

43. T. -F. Guo, G. He, S. Pyo, and Y. Yang* (2002, May). Investigation of the interfacial properties of laminated polymer diodes. Appl. Phys. Lett. 80, 4042-4044. (SCI).

44. T. -F. Guo and Y. Yang* (2002, Apr). In situ study on the reorientation of polymer chains in operating polymer diodes. Appl. Phys. Lett. 80, 148-150. (SCI).

45. T. -F. Guo, S. Pyo, S. -C. Chang, and Y. Yang* (2001, Oct). High performance polymer light-emitting diodes fabricated by a low temperature lamination process. Adv. Funct. Mater. 11, 339-343. (SCI).

46. S. -C. Chang, G. He, F. -C. Chen, T. -F. Guo, and Y. Yang* (2001, Sep). Degradation mechanism of phosphorescent-dye-doped polymer light emitting diodes. Appl. Phys. Lett. 79, 2088-2090. (SCI).

47. J. Liu, T. -F. Guo, Y. Shi, and Y. Yang* (2001, Apr). Solvation induced morphological effects on the polymer/metal contacts. J. Appl. Phys. 89, 3668-3673. (SCI).

48. T. -F. Guo, S. -C. Chang, Y. Yang*, R. C. Kwong, and M. E. Thompson (2000, Dec). Highly efficient electrophosphorescent polymer light-emitting devices. Org. Electron. 1, 15-20. (SCI).

Organic field-effect transistors (OFETs)


1. J. -Y. Yeh, T. -D. Tsai, A. T. Kuo, Y. -S. Chou, Y. -S. Liou, Z. -Y. Chang, Raymond C. -C. Tsiang*, T. -F. Guo and C. -H. Chang (2015, May). Synthesis and evaluation of self-assembled azido monolayer as a novel dielectric layer for fabricating pentacene-based organic thin film transistors. J. Nanosci. Nanotech. 15, 3681-3687. (SCI).

2. T. -D. Tsai, C. -Y. Huang, H. -M. Lin, T. -F. Guo*, and T. -C. Wen (2014, Dec). Switch the n-type to ambipolar transfer characteristics by illumination in n-type pentacene-based organic field-effect transistors. Org. Electron. 15, 3805-3810. (SCI).

3. T. -D. Tsai, J. -W. Chang, C. -G. Wang, M. -W. Lin, T. -F. Guo*, T. -C. Wen, J. -H. Chang, and C. -I. Wu (2014, Aug). The origins in the transformation of ambipolar to n-type pentacene-based organic field-effect transistors. Org. Electron. 15, 1759-1766. (SCI).

4. T. -D. Tsai, J. -W. Chang, T. -C. Wen, and T. -F. Guo* (2013, Mar). Manipulating the hysteresis in poly(vinyl alcohol)-dielectric organic field-effect transistors toward memory elements. Adv. Funct. Mater. 23, 4206-4214. (SCI).

5. J. -W. Chang, C. -G. Wang, C. -Y. Huang, T. -D. Tsai, T. -F. Guo*, and T. -C. Wen (2011, Sep). Chicken albumen dielectrics in organic field-effect transistors. Adv. Mater. 23, 4077-4081. (SCI). (SPIE Newsroom highlighted)

6. J. -W. Chang, P. -W. Liang, M. -W. Lin, T. -F. Guo*, T. -C. Wen, and Y. -J. Hsu (2011, Mar). An ambipolar to n-type transformation in pentacene-based organic field-effect transistors. Org. Electron. 12, 509-515. (SCI).

7. J. -W. Chang, W. -L. Hsu, C. -Y. Wu, T. -F. Guo*, and T. -C. Wen (2010, Oct). The polymer gate dielectrics and source-drain electrodes on n-type pentacenebased organic field-effect transistors. Org. Electron. 11, 1613-1619. (SCI).

8. T. -F. Guo*, Z. -J. Tsai, S. -Y. Chen, T. -C. Wen, and C. -T. Chung (2007, Jun). Influence of polymer gate dielectrics on n-channel conduction of pentacene-based organic field-effect transistors. J. Appl. Phys. 101, 124505. (SCI).

Polymer-based optically-induced dielectrophoretic devices


1. S. -J. Lin, S. -H. Hung, J. -Y. Jeng, T. -F. Guo*, and G. -B. Lee* (2012, Jan). Manipulation of micro-particles by flexible polymer-based optically-induced dielectrophoretic devices. Opt. Express 20, 583-592. (SCI).

2. W. Wang, Y. -H. Lin, T. -C. Wen, T. -F. Guo*, and G. -B. Lee* (2010, Mar). Selective manipulation of microparticles using polymer-based optically induced dielectrophoretic devices. Appl. Phys. Lett. 96, 113302. (SCI).

3. W. Wang, Y. -H. Lin, R. -S. Guan, T. -C. Wen, T. -F. Guo*, and G. -B. Lee* (2009, Sep). Bulk-heterojunction polymers in optically-induced dielectrophoretic devices for the manipulation of microparticles. Opt. Express 17, 17603-17613. (SCI).

Related Studies


1. Y. -R. Chen, C. -C. Hong*, T. -M. Liou*, K. C. Hwang, and T. -F. Guo (2017, Nov). Roller-induced bundling of long silver nanowire networks for strong interfacial adhesion, highly flexible, transparent conductive electrodes. Sci. Rep. 7, 16662 (SCI).

2. P. -Y. Lin, Z. -S. Wu, Y. -D. Juang, Y. -S. Fu*, T. -F. Guo* (2016, Jan). Microwave-assisted electrospun PVB/CdS composite fibers and their photocatalytic activity under visible light. Micro. Eng. 149, 73-77. (SCI).

3. K. -L. Huang, C. -H. Huang, W. -T. Lin*, Y. -S. Fu and T. -F. Guo (2015, Oct). Solvothermal synthesis and tunable bandgap of Cu2(Zn1-xCox)SnS4 and Cu2(Fe1-xCox)SnS4 nanocrystals. J. Alloys Compd. 646, 1015-1022. (SCI).

4. H. -T. Hsu, M. -H. Chiang, C. -H. Huang, W. -T. Lin*, Y. -S. Fu, and T. -F. Guo (2015, Jun). Effects of Ge- and Sb-doping and annealing on the tunable bandgaps of SnS films. Thin Solid Films 584, 37-40. (SCI).

5. C. -H. Hu, M. -H. Chiang, M. -S. Hsieh, W. -T. Lin*, Y. -S. Fu, and T. -F. Guo (2014, Mar). Phase formation, morphology evolution and tunable bandgap of Sn1−xSbxSe nanocrystals. CrystEngComm 16, 1786-1792. (SCI).

6. Y. -C. Chang*, S. -C. Lu, H. -C. Chung, S. -M. Wang, T. -D. Tsai, and T. -F. Guo (2013, Nov). High-throughput nanofabrication of infrared and chiral metamaterials using nanospherical-lens lithography. Sci. Rep. 3, 3339. (SCI).

7. M. -H. Chiang, Y. -S. Fu*, C. -H. Shih, C. -C. Kuo, T. -F. Guo, and W. -T. Lin* (2013, Apr). Effects of hydrazine on the solvothermal synthesis of Cu2ZnSnSe4 and Cu2CdSnSe4 nanocrystals for particle-based deposition of films. Thin Solid Films 544, 291-295. (SCI).

8. I. -T. Chen, P. -H. Chang, Y. -C. Chang*, and T. -F. Guo* (2013, Mar). Lighting up ultraviolet fluorescence from chicken albumen through plasmon resonance energy transfer of gold nanoparticles. Sci. Rep. 3, 1505. (SCI).

9. Y. -C. Chang*, H. -C. Chung, S. -C. Lu, and T. -F. Guo (2013, Mar). A largescale sub-100 nm Au nanodisk array fabricated using nanospherical-lens lithography: a low-cost localized surface plasmon resonance sensor. Nanotechnology 24, 095302. (SCI).

10. M. -H. Chiang, Y. -S. Fu, T. -F. Guo, H. -L. Liu, and W. -T. Lin* (2012, Sep). Effects of Zn precursors on solvothermal synthesis of Cu2ZnSnSe4 nanocrystals. Mater. Lett. 83, 192-194. (SCI).

11. C. -Y. Lin, K. -C. Chiu, C. -Y. Chang, S. -H. Chang, T. -F. Guo, and S. -J. Chen* (2010, Jun). Surface plasmon-enhanced and quenched two-photon excited fluorescence. Opt. Express 18, 12807-12817. (SCI).

12. G. L. Pakhomov*, D. A. Kosterin, L. G. Pakhomov and T. -F. Guo (2008, Jun). Doping of phthalocyanine films: structural reorganization versus acceptor effect. J. Mater. Sci. Mater. Electron. 19, 500-504. (SCI).

13. J. -S. Hwang*, H. -C. Lin, Y. -C. Hunag, K. -I. Lin, J. -W. Chang, and T. -F. Guo (2008, Jan). Enhancement of tetrahertz radiation in semiconductor induced by conjugated polymer. Electrochem. Solid St. 11, H63-H65. (SCI).

14. J. -S. Hwang, H. -C. Lin, Y. -C. Huang, K. -I. Lin, J. -W. Chang and T. -F. Guo (2007, Jun). Conjugate Polymer Induced Enhancement of THz Radiation in Semiconductors. ECS Trans. 11, 59-74. (SCI).

15. T. J. Huang, A. H. Flood, B. Brough, Y. Li, P. A. Bonvallet, S. Kang, C. -W. Chu, T. -F. Guo, W. Lu, Y. Yang, J. F. Stoddart, and C. -M. Ho* (2006, Jul). Understanding and harnessing biomimetic molecular machines for NEMS actuation materials. IEEE T. Autom. Sci. Eng. 3, 254-259. (SCI).

16. T. -F. Guo, S. -C. Chang, S. Pyo, and Y. Yang* (2002, Oct). Vertically integrated electronic circuits via a combination of self-assembled polyelectrolytes, ink-jet printing, and electroless metal plating processes. Langmuir 18, 8142-8147. (SCI).